## Wednesday, August 28, 2013

### Reflections From #precalcchat: Pre-Calculus Sequencing

I love Twitter chats with other teachers. It's a great way to make connections. It's a great way to get insight, ideas, and resources. It's also a fantastic opportunity to reflect on your own practice and to improve what you're doing in the classroom.

The Global Math Department hosts several weekly Twitter chats for math teachers on a variety of topics. Since I teach Pre-Calculus, I dropped in on the first #precalcchat of the school year last week; thanks to Mimi (I Hope This Old Train Breaks Down...) and Taoufik Nadji for hosting. Couldn't spend much time, but the topic of conversation captured my interest:

I loved that thought. It made me stop and think about how I sequence my Pre-Calculus course and why.

I start with Graphing and Functions first. To me, it's important for students to understand the basics of interpreting graphs of functions and becoming fluent with moving between different representations of a function (graphs, tables, equations). I find this to be a particularly vital theme that I want to drive home with my students, especially those who will be going on to AP Calculus or Calculus I/II in college.

Next, I follow a pretty standard sequence of Quadratics/Polynomials, Rational Functions, Exponential Functions, Logarithmic Functions, Trigonometric Functions, and Analytical Trigonometry. Again, I focus on these topics in particular to prepare my students for success in an AP Calculus course. Other topics such as Analytical Geometry, Series & Sequences, Polar Systems of Coordinates, Conics, etc. come afterward as time allows.

The other chatters all had brilliant things to say, so naturally I felt like I'm probably doing everything wrong (or maybe just some things wrong, and other things not-as-wrong).

When discussing how Pre-Calculus can seem like a re-teaching of Algebra II to students, Tina C (Drawing On Math) mentioned that her school starts with Trigonometry for that exact reason.

This was an interesting idea to quite a few of us: do Trig first semester, slowly build up conceptual understanding of the unit circle, graphing, transformations, identities, etc. Then, move into the other different functions second semester.

The more I think about doing Trig first, the more appealing it seems to me. I've always found that I never seem to have enough time to really properly teach Trig and I need to either rush a few things or cut some other stuff out. I think I probably always had the notion that Trig is "more difficult," and somehow it made sense to put the "harder stuff" at the end of the year. (That's excellent reasoning, isn't it?)

But really though, Trig is a bit of a stand-alone topic. It could go anywhere in the course sequence. There are certainly some underlying concepts that can be applied to other functions: graphing, transformations, moving fluently between representations, and so on. I usually think of these concepts as having to be taught and mastered before doing Trig, as if Trig is the "CHALLENGE MODE" of working with functions in Pre-Calculus.

Who's to say we can't use Trig to teach these concepts instead? Maybe my students would have greater success with Trig if I did it at the beginning of the year, built the concepts slowly with appropriate scaffolding, while still equipping students to be successful in working with other functions. I may have to try it out one of these years. (I already have this year mapped out -- maybe next year?)

Anyway, some great food for thought.

I'm looking forward to more of these chats this school year, and hopefully I'll find time to continue blogging & reflecting on what I take away from them.